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Abstract

The stability of piles that are supported vertically by a frictional force and laterally along their entire
length by an elastic Winkler foundation is investigated for the case when the coe.cient of subgrade reaction
is either constant or varies linearly with depth and the friction is constant along the embedded length of the
pile[ A comparison between frictional and end!bearing models is made[ Finally\ a concise summary of the
buckling loads for fully embedded friction piles is produced[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Previous analytical treatments of the buckling of straight axially loaded piles completely embed!
ded in elastic foundations have been based on the assumption that the foundations are homo!
geneous and the loading is concentrated at the extremities of the pile "Hete�nyi\ 0835^ Eisenberger
and Yankelevsky\ 0874^ West et al[\ 0885#[ There are clearly many situations when these postulates
are invalid "Terzaghi\ 0844#[ However\ it is generally accepted that the Winkler model does provide
a reasonably accurate method for estimating the lateral response of piles "Pavlovic� and Tsikkos\
0871#[ The evaluation of the spring sti}ness used in the Winkler model "also known as the modulus
of subgrade reaction# varies with many parameters such as the breadth and sti}ness of the pile
and the intensity of the lateral load^ guidance on its evaluation in the _eld may be found\ for
example\ in CIRIA "0873# and West "0880#[

This paper investigates the stability of a uniform!friction pile restrained by an elastic foundation
of linearly varying modulus of subgrade reaction along its entire length using an exact closed!form
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Fig[ 0[ A fully embedded pile in a linearly varying elastic foundation supported by a frictional force[

solution[ In the formulation of the solution given in this paper any end conditions may be speci_ed
but the results discussed in detail are for _xedÐ_xed\ pinnedÐpinned and freeÐfree piles[ The
method outlined allows the investigation of both homogeneous and non!homogeneous subgrade!
reaction cases\ and also any proportion of the applied load to be supported by combinations of
end!bearing or constant friction along the pile[

In this analysis the applied load remains vertical throughout and is resisted by shaft friction
which is modelled as a vertical force distributed along the entire length of the pile shaft[ The more
complex case of a follower applied load is considered elsewhere using a discrete element approach
"Smith\ 0868#[ The springs of the Winkler foundation are perpendicular to the axis of the pile shaft
and\ hence\ non!vertical piles can be analysed provided the modulus of subgrade reaction at right
angles to the pile can be determined[ This could lead to the applied load being eccentric to the axis
of the pile[ Although the solution to the latter problem is beyond the scope of this paper\ it is
outlined in principle at the end of the next section[

1[ Method of analysis

Using a technique similar to that of Hete�nyi "0835# and taking an element dx of the pile in Fig[
0 it may be seen that\ for moment equilibrium\

dM
dx

−P"x#
dy
dy

−Q"x# � 9 "0#

where P"x# is the axial compressive force which is dependent on x\ the distance along the pile\ and
Q"x# is the shear force at a point x along the pile[ These variables can be written as
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M � −EI
d1y

dx1
\ P"x# � P9−fx and

dQ
dx

� k"x#y "1Ð3#

where EI is the ~exural rigidity of the pile member and is constant along its length in the present
analysis\ P9 is the force in the pile at the top of the pile "x � 9#\ f is the friction per unit length of
pile and k"x# is the modulus of subgrade reaction[ f is assumed to be constant and k"x# is assumed
to vary linearly with x\ the distance below the top of the pile\ so that

k"x# � k9¦cx "4#

where k9 and c are constants for the foundation[ kl is de_ned as the maximum value of the sti}ness
parameter which exists at the base of the pile at x � l "Fig[ 0#[ The non!dimensional parameters m

and l are introduced such that

m �
Pl

P9

\ l � 0
kll

3

EI 1
0:1

"5#

where Pl is the load in the pile at the bottom of the pile "x � l#[ m represents the proportion of the
buckling load which is supported at the base of the pile and l is the non!dimensional soil!sti}ness
parameter[ In this way\ piles completely supported by friction will have m � 9 and end!bearing
piles with no friction will have m � 0[ It follows that

f �
P9−Pl

l
�

"0−m#
l

P9 "6#

Di}erentiating "0# with respect to x and then substituting the variables from "1#Ð"4#\ the following
is produced

EI
d3y

dx3
¦"P9−fx#

d1y

dx1
−f

dy
dx

¦"k9¦cx#y � 9 "7#

If the variable

j � 0
k9¦cl

EI 1
0:3

"x−l# � a"x−l# "8#

is introduced\ then

x �
j

a
¦l "09#

It follows that

dy
dx

� a
dy
dj

"00#

and\ generally\



M[E[ Heelis et al[ : International Journal of Solids and Structures 25 "0888# 2166Ð21812179

dny

dxn
� an dny

djn
"01#

The governing equation with respect to j can now be formed as

d3y

dj3
¦2

P9−
fj
a

−fl

a1EI 3 d1y

dj1
−

f

a2EI

dy
dj

¦2
k9¦

cj
a

¦cl

a3EI 3 y � 9 "02#

Now\ let

P9

a1EI
�

P9

z"klEI#
� b "03#

Hence

f

EIa2
�

"0−m#b

l9[4
"04#

and

fl

a1EI
�

"0−m#P9

a1EI
�"0−m#b "05#

Also\ let

k9¦
cj
a

¦cl

a3EI
�

kl

a3EI
¦

cj

a4EI
� 0¦gj "06#

where\

g �
c

akl

"07#

and let

G"j# � mb−
"0−m#bj

l9[4
"08#

Hence\ the dimensionless governing equation becomes

d3y

dj3
¦G"j#

d1y

dj1
−

"0−m#b

l9[4

dy
dj

¦"0¦gj#y � 9 "19#

This is a fourth!order di}erential equation with variable coe.cients[ An exact solution is not
available and\ therefore\ a power!series solution will be assumed[ The solution is of the form
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y � s
�

n�9

anj
n "10#

and by substituting it into "19#\ the following recurrence relationship between the coe.cients an is
produced

an � −
mb"n−1#;an−1

n;
¦

"0−m#"n−2#b"n−1#;an−2

l9[4n;
−

"n−3#;an−3

n;
−

g"n−3#;an−4

n;
"11#

For any value of the parameter n\ an may be written in terms of the _rst four terms in the series
"a9\ a0\ a1 and a2#[ Therefore\ an is a linear function of a9\ a0\ a1 and a2\ and so the general solution
to the di}erential equation is

y � s
2

i�9

AiYi "12#

where

Yi � ji¦ s
�

n�3

anj
n "13#

and for n ³ 3\ an � 0 if n � i and an � 9 if n � i[ A9ÐA2 represent the four constants of integration[
To obtain a buckling load of the pile and the corresponding mode shape\ the boundary conditions

at the ends of the member must be speci_ed[ If rotation is fully allowed\ an expression for the
bending moment at the pile end"s# must be obtained[ When displacement in the y!direction is fully
allowed\ an expression for the shear force is required[ The expressions for zero displacement\ slope\
bending moment and shear force with respect to the coordinate x are\ respectively\

y � 9\
dy
dx

� 9\
d1y

dx1
� 9 and 0

d2y

dx2
¦

P
EI

dy
dx1� 9 "14Ð17#

but\ with respect to the coordinate j\ they are\

y � 9\
dy
dj

� 9\
d1y

dj1
� 9 and

d2y

dj2
¦G"j#

dy
dj

� 9 "18Ð21#

The speci_cation of the boundary conditions at the two ends of the pile yields four homogeneous
equations\ which can be expressed in a matrix equation\

ðMŁA � 9 "22#

where M is formed using the following half!matrices to de_ne all four possible instances of limiting
boundary conditions "Fig[ 1#\ with one half!matrix being evaluated at x � 9 and one at x � l^

ðMfixedŁ � $
Y9"x# Y0"x# Y1"x# Y2"x#

Y?9"x# Y?0"x# Y?1"x# Y?2"x#% "23#
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Fig[ 1[ The four cases of limiting boundary condition at the end of a member[

ðMpinnedŁ � $
Y9"x# Y0"x# Y1"x# Y2"x#

Yý9"x# Yý0"x# Yý1"x# Yý2"x#% "24#

ðMfreeŁ � $
Yý9"x# Yý0"x# Yý1"x# Yý2"x#

Yý9"x#¦G"j#Y?9"x# Yý0"x#¦G"j#Y?0"x# Yý1"x#¦G"j#Y?1"x# Yý2"x#¦G"j#Y?2"x#%
"25#

ðMno rotationŁ

� $
Y?9"x# Y?0"x# Y?1"x# Y?2"x#

Yý9"x#¦G"j#Y?9"x# Yý0"x#¦G"j#Y?0"x# Yý1"x#¦G"j#Y?1"x# Yý2"x#¦G"j#Y?2"x#% "26#

and

A �

K

H

H

H

H

k

A9

A0

A1

A2

L

G

G

G

G

l

"27#

The condition =M= � 9 gives the eigenvalues corresponding to the buckling load of the pile[ A
modi_ed sign count algorithm is used to _nd the eigenvalues which are expressed in terms of j

"West and Pavlovic�\ 0882#[ Hence\ the values of the constants of integration A9ÐA2 relative to each
other are obtained for a particular eigenvalue and the buckling mode shape is calculated[ "A note
should be made regarding computations as l : 9] clearly\ for l � 9 there is a singularity because
then a � 9 which leads to l : �^ however\ the present algorithm works well for very small but
_nite l " for example\ l ¼ 9[9990#[#
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It is now convenient to introduce the following non!dimensional parameters\ where the buckling
force will be denoted as Pcrit]

F �
k9

kl

\ u �
Pcrit

PE

"28\39#

where PE is the Euler buckling load of a simply supported beam with no elastic supports along its
span and is given by PE � p1EI:l1[ u is the dimensionless buckling force as de_ned in Hete�nyi
"0835#[

It would be expected that\ for the _rst buckling mode of an end!bearing simply supported pile\
u tends to one as the sti}ness of the supporting medium tends to zero\ while for a pile which is
built!in at both supports\ u tends to four[ These results are predicted by simple Euler theory[ For
the case of friction piles these limits no longer exist\ but by using m � 0\ an end!bearing pile can
be modelled in order to verify the proposed method[

Note that\ if the applied load on top of the pile was eccentric "or the pile was not vertical#\ then
this could be analysed by modelling the eccentric loading as a moment and:or shear force at x � 9[
This could be accommodated by the vector in eqn "22# no longer being a zero vector[ While this
would not alter the problem of the determination of the limiting eigenvalues "which is the principal
object of the present work#\ there would be no proper bifurcation point but a steady increase in
de~ection which would rapidly tend to large values as the critical load was approached[

2[ Results

To limit the number of graphs produced in this paper only the extreme cases of m � 9 and m � 0
will be examined initially though the method used can be applied to any value of m[ The extreme
value of m � 9 gives an upper estimate for the evaluation of the buckling force because the axial
force reduces along the pile length and\ hence\ the lower part of the pile is less likely to buckle[
This means that the apparent length of the pile is reduced and the buckling load is increased[ It
should be noted that the case of m � 0 "the end!bearing case# is dealt with in depth in West et al[
"0886#[ The two extreme cases of soil homogeneity "F � 0 and F � 9# in eqn "27# are\ clearly\
relevant to actual soil conditions as they approximate idealized unconsolidated clay and sand or
consolidated clay conditions\ respectively "Terzaghi\ 0844#[ Varying F is also possible with the
solution outlined above^ however\ discussion of the extreme cases means that di}erences in solu!
tions are emphasized as much as possible and only upper and lower bounds of behaviour are
provided[ Hete�nyi "0835# demonstrated for end!bearing piles with uniform soil sti}ness that\ as
the soil sti}ness increases\ there are predictable changes in the fundamental mode shape which can
be characterized by the addition of a single half!wave "Fig[ 2#[ Figure 2 also shows how the _rst
and second buckling loads approach each other "before locally crossing over# for certain values of
soil sti}ness " for example at l ¼ 29#^ this is called a modal cluster[ For symmetric boundary
conditions " _xedÐ_xed\ pinnedÐpinned and freeÐfree# the theoretical buckling force can also be
predicted exactly using a series of hyperbolic and trigonometrical expressions\ as shown by Hete�nyi
"0835#[ West et al[ "0886# showed that\ for end!bearing piles\ when the soil sti}ness is allowed to
vary linearly with depth\ these mode changes only occur at relatively weak soil sti}nesses\ stabilizing
to a mode shape with a constant number of half!waves as l increases "say\ approximately l × 049*
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Fig[ 2[ First two buckling modes for a _xedÐ_xed end!bearing beam fully embedded in a homogeneous soil[

see Fig[ 3#[ As expected\ this mode shape is di}erent to the Euler buckling mode shape that would
exist if the soil was not present as discussed in West et al[ "0886#[

In verifying results by the use of a _nite!element program using the method described by Lawther
and Kabaila "0871# it was found that\ when two modes are close together\ the analysis would _rst
converge on the second mode rather than the _rst mode^ also\ the mode shapes predicted would
then be swapped and could be signi_cantly di}erent[ This illustrates the necessity of adopting the
present formal analytical approach[ Additionally\ it should be noted that\ while the lowest mode

Fig[ 3[ First buckling mode for a _xedÐ_xed end!bearing beam fully embedded in a homogeneous "F � 0# and a non!
homogeneous "F � 9# soil[



M[E[ Heelis et al[ : International Journal of Solids and Structures 25 "0888# 2166Ð2181 2174

is the most signi_cant\ imperfections in the pile could mean that the second mode is produced[
Also\ attempts to strengthen a given pile by adding restraints with the aim of preventing particular
modes from developing have to be carefully considered[ Consequently\ the inspection of higher
modes in this work is used to establish whether there are any generic trends in their behaviour
which will enable the prediction of trends in the lower modes which are hard to recognize if only
the lowest modes are calculated[

In Fig[ 4\ the buckling loads are plotted for a beam fully embedded in a homogeneous soil with
constant friction when the unembedded end!condition is _xed but the embedded end!condition is
allowed to vary[ The buckling loads do not depend on the embedded end!condition except at very
low values of soil sti}ness[ It is thus possible to use any embedded end!condition[ However\ in the
following discussion\ symmetric boundary conditions will be used in order that parameters other
than the boundary conditions can also be concentrated upon[ The use of symmetric boundary
conditions also allows a direct comparison with the results published for end!bearing piles in
Hete�nyi "0835# and West et al[ "0886#[

Using the present analytical formulation\ the buckling loads for a pile completely supported by
friction and a pile completely supported by end!bearing are calculated and plotted in Fig[ 5 for
the _xedÐ_xed case[ The friction case produces much higher buckling loads in all cases[ The reason
for this can be seen if the mode shapes in Fig[ 6 are examined[ In the friction case\ for high l\ the
buckling mode is concentrated in the top half of the pile\ whereas for the end!bearing case the
de~ected shape extends along the whole pile[ This non!symmetrical mode shape would be expected
if the load distribution in the friction pile is considered[ For instance\ with m � 9\ half!way down
the pile the axial force would be equal to half the applied load at the top\ while at the bottom of
the pile the axial force is equal to zero^ thus\ if a crude average of the axial forces applied to the

Fig[ 4[ First buckling mode for a fully embedded pure!friction beam with a _xed unembedded end and various conditions
at the embedded end in a homogeneous soil with constant soil sti}ness "F � 0# and constant shaft friction[
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Fig[ 5[ First six buckling modes for a _xedÐ_xed pile with a constant soil sti}ness supported entirely by either a constant
frictional force or end!bearing "* m � 9\ ! ! ! m � 0#[

Fig[ 6[ Mode shapes for the _rst buckling mode as l varies for the _xedÐ_xed case[ "Some of the mode shapes are not
shown "see dotted lines# as there is negligible variation in mode shape in this range[#
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Fig[ 7[ First buckling mode for a _xedÐ_xed pile entirely supported by a constant frictional force along its embedded
length as the soil homogeneity is varied[

top and bottom halves was taken\ the average in the top half would be three quarters of the applied
load\ compared to only a quarter in the bottom half[ Since in the homogeneous case the soil
sti}ness supporting both sections is the same\ the top half would be more liable to buckle[

Consider again Fig[ 5\ where\ despite the scale of the diagram\ it is just possible to distinguish a
series of modal clusters for the m � 0\ end!bearing case[ However\ they are not present in the
friction case except at the low end of the range of soil sti}nesses considered and\ even here\ the
clusters are not as well de_ned as in the end!bearing case[ Moreover\ unlike the latter case\ there
is no cross!over of modes in the friction case[ Hence\ for all these reasons\ from this point onward\
the discussion will concentrate on the fundamental mode\ which always provides a well!de_ned
minimum\ although it should be remembered that\ especially for the range of soil sti}ness l ³ 099\
the second mode may approach the _rst mode[

Figure 7 shows how the buckling loads vary when the soil sti}ness changes between a constant
and a linear variation with depth "F � 0 and F � 9\ respectively# for a friction pile[ As would be
expected\ the linear variation in soil sti}ness produces piles with a lower buckling load compared
to piles with a constant soil sti}ness with depth[ This is because the linear variation in soil sti}ness
supports the pile least where the amplitude of the mode shape is greatest\ that is\ near the soil
surface[ Figure 6\ depicting the buckling modes for F � 9 and F � 0\ shows how the e}ect of the
non!homogeneity in the soil sti}ness pushes the buckled shape upwards towards the more ~exible
soil at moderate to high values of l[ This is a similar e}ect to that of introducing the frictional
support to the system[ In Fig[ 8 the results for linearly increasing soil sti}ness for both cases
"where the pile is supported by end!bearing and constant friction# are plotted[ The results for the
fundamental modes between m � 9 and m � 0 are not as separated compared to their counterparts
in the constant soil!sti}ness case "Fig[ 5#\ because the non!homogeneity in the soil sti}ness has
already restricted the portion of the pile likely to buckle to where the decrease in the load in the
pile is less pronounced\ that is\ at the top of the pile[ This is re~ected in Fig[ 6 where the mode
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Fig[ 8[ First six buckling modes for a _xedÐ_xed pile with a linearly increasing soil sti}ness supported entirely by either
a constant frictional force or end!bearing "* m � 9\ ! ! ! m � 0#[

shapes for m � 9 and m � 0 " for F � 9# are similar with maximum amplitudes of the mode shape
at the top of the pile[

Figure 09 shows how the buckling load varies with soil sti}ness for F � 0 for pinnedÐpinned
end conditions as the load support mechanism varies from m � 9 to m � 0[ Again\ modal clusters
tend not to appear in the friction case\ as observed earlier for the _xedÐ_xed case[ Note that the
increase in the _rst mode between the end!bearing and the friction cases is only 14) compared to

Fig[ 09[ First six buckling modes for a pinnedÐpinned pile with constant soil sti}ness entirely supported by either a
constant frictional force or end!bearing "* m � 9\ ! ! ! m � 0#[
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Fig[ 00[ First six mode shapes at l � 299 for the pinnedÐpinned pile entirely supported by friction with a constant soil
sti}ness[

79) in the _xedÐ_xed case at l � 299[ The reason for this is that the large amplitudes of the mode
shape can be closer to the top of the pile than in the _xedÐ_xed case[ As mentioned previously this
is the portion of the beam where the load in the pile changes least from the end!bearing to the
friction case[ Note that\ for all except the lower sti}nesses\ the modes from 0 to 5 are spaced evenly
in the friction case whereas with the end!bearing results the mode shapes are paired "West et al[\
0886#[ In Fig[ 00 the _rst six modes at l � 299 are plotted[ The reason for the even spread of the
buckling loads in Fig[ 09 can be seen to be caused by the smooth progression of the wave with
maximum amplitude and largest wavelength down the pile[

In Fig[ 01 the results for the _nal symmetric problem with freeÐfree ends are plotted[ It should
be noted that\ for the end!bearing results "West et al[\ 0886#\ the _rst two modes are almost equal
and cannot be readily distinguished using the scale on the diagram[ The _rst mode of the friction
case is almost identical to the results for m � 0\ the di}erence at l � 299 being less than 4)[ The

Fig[ 01[ First six buckling modes for a freeÐfree pile with a constant soil sti}ness entirely supported by a constant
frictional force along its embedded length "* m � 9\ ! ! ! m � 0#[
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Fig[ 02[ Mode shapes for the _rst buckling mode as l varies for the freeÐfree pile entirely supported by friction with a
constant soil sti}ness[ "See note for Fig[ 5[#

second modes and above in the friction case are much higher[ Figure 02 shows the _rst mode
shapes for the end!bearing and friction cases as soil sti}ness increases[ Observe that for the
fundamental mode in the friction case at low "but not zero# soil sti}ness\ there is a characteristic
mode shape which does not change signi_cantly as the soil sti}ness increases[

In Figs 03 and 04 it is possible to plot a concise summary of the results for friction piles with
the various unembedded end!conditions "since\ as pointed out earlier\ the embedded end!condition

Fig[ 03[ First buckling mode for a fully embedded pure!friction beam with various conditions at the unembedded end
in a homogeneous soil with constant soil sti}ness "F � 0# and constant shaft friction[
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Fig[ 04[ First buckling mode for a fully embedded pure!friction beam with various conditions at the unembedded end
in a non!homogeneous soil with triangular soil sti}ness "F � 9# and constant shaft friction[

has practically no e}ect on the buckling load except at very low l*see Fig[ 4#[ The lines are the
average of the buckling loads as the embedded end!condition is varied[ At low soil sti}nesses the
lines are not plotted if the maximum di}erence between the average and any one of the four
embedded end!conditions exceeds 4)[ The four limiting possibilities have been depicted in Fig[ 1[

It is possible to extend the method herein to provide the solution to a layered soil model[ Each
layer may be homogeneous or non!homogeneous[ Compatibility of de~ection\ slope\ shear force
and bending moment at the interface between each pair of layers can be combined with the
boundary conditions at the top and the bottom of the pile\ to provide su.cient equations to solve
for the unknown coe.cients[ For a two!layered system this would mean that the _nal problem is
expressed as an 7×7 matrix "see the partially embedded problem in Heelis\ 0885#[ A three!layered
problem would be de_ned by a 01×01 matrix\ although\ each row or column would only have a
maximum of eight non!zero elements[

3[ Conclusions

The dimensionless buckling loads and mode shapes for an Euler pile either completely supported
by a constant frictional force along its entire length or purely end!bearing\ and resting in a Winkler
foundation have been presented[ The soil!sti}ness parameter of the Winkler foundation can either
be constant with depth or vary linearly with depth\ with either a zero or non!zero soil sti}ness at
the top of the pile[ They were produced using an exact analytical solution to the governing
di}erential equation and a powerful eigenvalue!solving algorithm on a standard computer[

The mode shapes for the previously studied problem of end!bearing piles with constant soil
sti}ness are signi_cantly di}erent to their counterparts for friction piles[ The e}ect of either friction
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or non!homogeneity of soil leads to the mode shape being concentrated in the upper portion of
the pile and\ hence\ the mode shapes are not symmetrical or anti!symmetrical "as they were in the
homogeneous end!bearing case#[ It may be concluded that the solution by Hete�nyi "0835# are of
limited value in the prediction of mode shapes when either friction or non!homogeneity in the soil
are liable to be present[ Also\ the e}ect of any rotational and:or displacement restraint at the pile
foot is of minimal e}ect to the buckling mode shape for all but the lower range of values of the
non!dimensional soil!sti}ness parameter\ much more so than when the soil is homogeneous and:or
end!bearing prevails] nevertheless\ for completeness\ most plots cover all end!conditions for the
embedded end\ including the more realistic instance of a free "embedded# end[

With respect to the buckling loads that are predicted\ there is no generic trend across all the
di}erent end conditions[ Taking values at l � 299\ the increase in buckling load for the friction
support compared to the end!bearing support are around 79\ 14 and 4) for the _xedÐ_xed\
pinnedÐpinned and freeÐfree end conditions\ respectively\ for the _rst mode[ This means that there
is no simple guideline or equation which can be employed to predict the increase in buckling load
produced by the addition of friction to the model and\ hence\ a series of non!dimensional graphs
have presently been produced from which the buckling load of a friction pile in either an homo!
geneous or a non!homogeneous soil may be predicted[
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